Robust Content-Dependent Photometric Projector Compensation

Presentation for Procams 2006 workshop on projector-camera systems

Mark Ashdown, Takahiro Okabe, Imari Sato, Yoichi Sato University of Tokyo, and National Institute of Informatics, Japan

Motivation

- Cheap and portable projectors will be used in non-ideal situations
 - Surface reflectance makes patterns
 - Ambient light reduces contrast
- We want to be robust to difficult projection situations

original

patterned surface

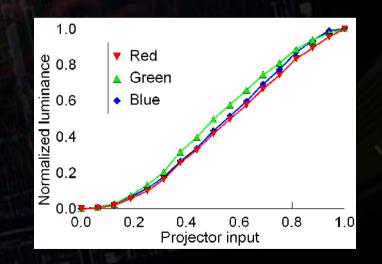
ambient light

Goal

- Compensate for irregularities in the projection system
- Achieve contrast and saturation as close as possible to that in the ideal condition

compensated result

uncompensated result


Overview

- Characterizing the projection system
- Fit the image to the display
 - Image fitting
 - Framework
 - Our implementation
- Results
- Future work

Characterization

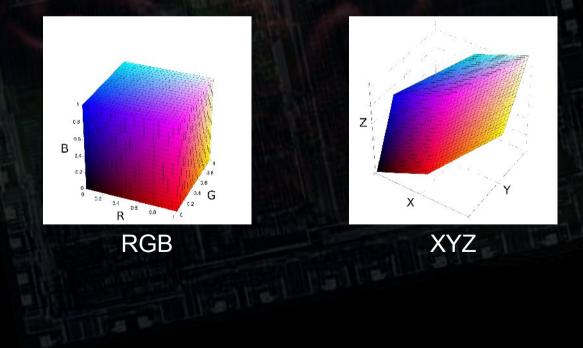
Assumptions

- Environment is static
- Surface is Lambertian
- Three additive primaries
- Linearize projector response

Characterization

 Get radiometric model that defines a per-pixel mapping RGB to XYZ

surface


uncompensated result

compensated result

Grossberg, Peri, Nayar, and Belhumer, *Making One Object Look Like Another: Controlling Appearance Using a Projector-Camera System,* CVPR 2004

Characterization

RGB input is limited to unit cube
This corresponds to a gamut in XYZ space
Gamut is different at every display pixel

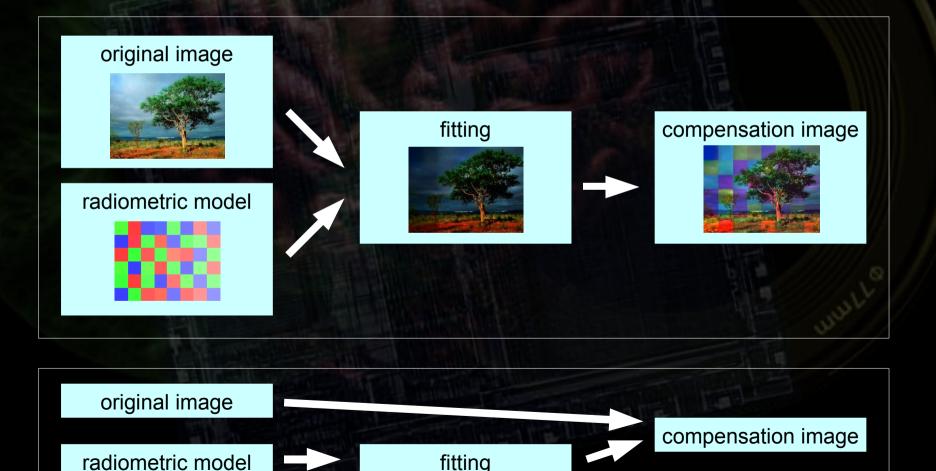
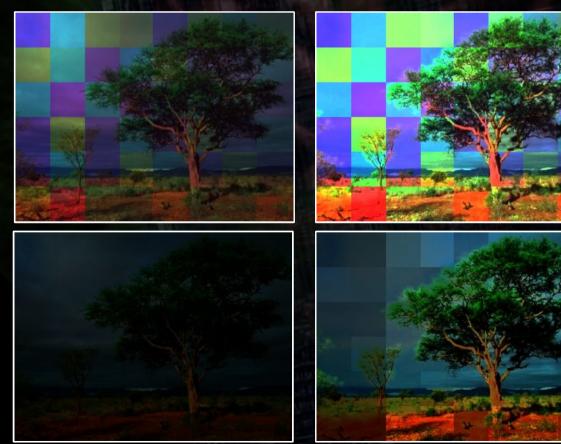


Image Fitting

- Consider radiometric model and image content
- Fit image to spatially-varying gamut
- Balance competing properties


Content Dependence

Fitting is tailored to the radiometric model and the original image

Spatial Variation

Fit image to spatially-varying gamut

low range, uniform

high range, uniform

spatially varying

Properties

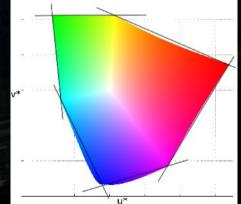
 During image fitting we will balance four properties

Extent

Uniformity

Gamut

Deviation


Framework

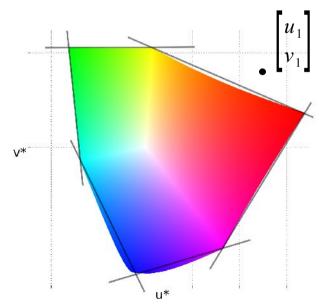
- Desired appearance
 Chrominance fitting
 Range calculation
 Luminance fitting
- Compensation image

Desired Appearance

- First we must know the appearance under ideal conditions
 - Original image in sRGB
 - Convert to L*u*v*

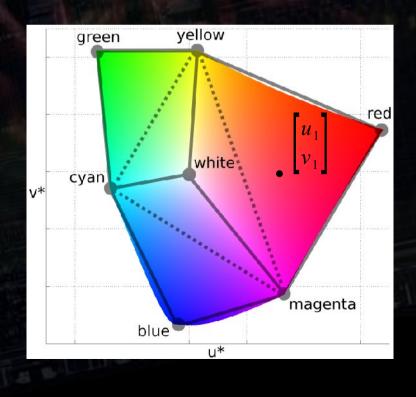
Chrominance Fitting

- Compute a transformation to fit the image chrominance to the spatially-varying gamut
 - Find a transformation with three parameters, s, a, b, by minimizing E


gamut

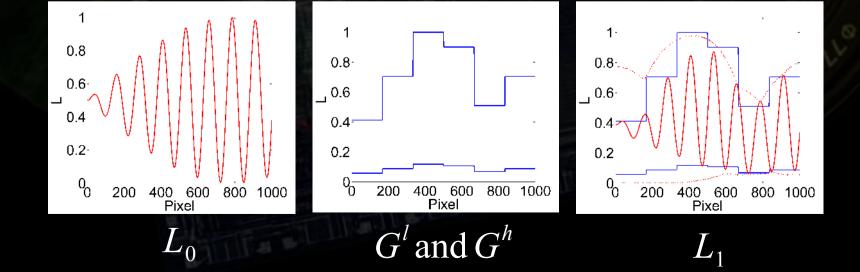
$$\begin{bmatrix} u_1 \\ v_1 \end{bmatrix} = s \begin{bmatrix} u_0 \\ v_0 \end{bmatrix} + \begin{bmatrix} a \\ b \end{bmatrix}$$

extent


$$E = c_1 (1-s)^2 + c_2 (a^2 + b^2) + \frac{1}{n} \sum_{\text{pixels lines}} \sum_{\text{lines}} e^{c_3 (r \cdot m + l_c)}$$

deviation

Range Calculation


- Calculate a range [G^I, G^h] within which (u_1, v_1) can be produced
 - Approximate the gamut with 12 triangles
 - Linearly interpolate L

Luminance Fitting

- Fit the image luminance to the previously calculated range
 - Linearly interpolate L₀ between two spatially-varying values

$$L_1 = F' + (F' - F')L_0$$

Luminance Fitting

Optimize to get F^I and F^h

 $L_1 = F^l + (F^h - F^l) L_0$ $e = \sum \sum (s_{i,j} + d_1 r_{i,j} + d_2 t_{i,j} + d_3 w_{i,j})$

> $s = (F_x^l)^2 + (F_y^l)^2 + (F_x^h)^2 + (F_h^h)^2$ uniformity $r = \begin{cases} (L_1 - G^l)^2 & \text{if } L_1 < G_l \\ (L_1 - G^h)^2 & \text{if } L_1 > G_h \\ 0 & otherwise \end{cases}$ $t = (F^{l})^{2} + (F^{h} - 1)^{2}$ $w = e^{d_4(F^l - F^h)}$

gamut

extent & deviation

Compensation Image

- Calculate the projector RGB value that will produce the fitted result
 - Convert from L*u*v* to RGB
 - Clip to RGB cube

Results

Compensating for varying surface colour

surface

compensation image

compensated result

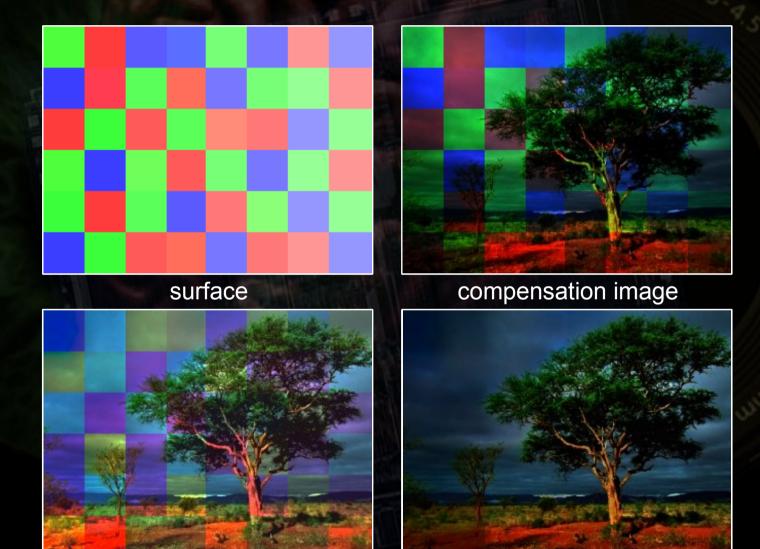
uncompensated results

Results

 Compensating for large variation in surface brightness

surface

compensation image


compensated result

uncompensated result

Results

Balancing the various aims

uncompensated result

compensated result

Future Work

Speed

- Alternative method for optimization
- Use coarser luminance fitting
- Video
 - Allow image to vary over time
 - Apply temporal uniformity constraint