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Abstract

We present a novel multi-planar display system based on
an uncalibrated projector-camera pair. Our system exploits
the juxtaposition of planar surfaces in a room to create ad-
hoc visualization and display capabilities. In an office set-
ting, for example, a desk pushed against a wall provides
two perpendicular surfaces that can simultaneously display
elevation and plan views of an architectural model. In
contrast to previous room-level projector-camera systems,
our method is based on a flexible, minimalist calibration
procedure which is tailored to the geometry of the multi-
planar surface scenario. Our procedure makes it possible
to quickly auto-calibrate the display with a minimum of ef-
fort on the part of the user. A number of display configura-
tions can be created on any available planar surfaces using
a single commodity projector and camera. The key to our
calibration approach is an efficient technique for simulta-
neously localizing multiple planes and a robust planar met-
ric rectification method which can tolerate a restricted cam-
era field-of-view and requires no special calibration objects.
We demonstrate the robustness of our calibration method
using real and synthetic images and present several applica-
tions of our display system.

1. Introduction
Recent advances in commodity high-resolution ultra-
portable projectors have stimulated the development of a
variety of novel projected displays such as large multi-
projector walls [3], steerable projected displays [10], im-
mersive environments [2, 13], intelligent presentation sys-
tems [11, 15] and remote-collaboration tools [16]. The ef-
fort involved in manually calibrating multiple projectors to
each other and aligning projected displays to physical sur-
faces has motivated research in projector-camera systems,
where techniques adopted from multi-view computer vision
are applied to collections of projectors and cameras. A good
survey of computer vision research in this area can be found

in the proceedings of a recent ICCV workshop [14].
We present a novel multi-planar display system based

on an uncalibrated projector-camera pair. Our system ex-
ploits the juxtaposition of planar surfaces in a room to cre-
ate ad-hoc visualization and display capabilities. In an of-
fice setting, for example, a desk pushed against a wall pro-
vides two perpendicular surfaces that can simultaneously
display elevation and plan views of a map (see Figure 1). In
contrast to previous room-level projector-camera systems,
our method is based on a flexible, minimalist calibration
procedure which is tailored to the geometry of the multi-
planar surface scenario. Our procedure makes it possible to
quickly auto-calibrate the display with a minimum of effort
on the part of the user. The key to our calibration approach
is an efficient technique for simultaneously localizing mul-
tiple planes and a robust planar metric rectification method
which can tolerate a restricted camera field-of-view. We
demonstrate the robustness of our calibration method using
real and synthetic images and present several applications
of our display system.

The remainder of this paper is structured as follows. Sec-
tion 2 discusses related work. Sections 3, 4, 5 and 6 describe
and evaluate our calibration algorithms. Section 7 summa-
rizes our contributions and proposes some promising direc-
tions for future research.

2. Related Work

Given a calibrated projector-camera pair, conventional
structured light ranging can be used to reconstruct a com-
plete 3-D model of an arbitrary display environment [13].
Given an uncalibrated projector-camera pair, there are a va-
riety of calibration techinques for the case where the display
suface is a single plane. These methods generally consist
of two stages: (1) estimation of homographies relating the
projector and camera to the display surface, (2) followed by
metric rectification of the planar homography. For example,
in [15], planar homographies are estimated from projected



Figure 1: Calibrating a projector-camera system to a mul-
tiple surfaces. (a) The projector and camera are placed ar-
bitrarily and the 3D geometry of the display surfaces is un-
known. (b) A variant of structured light is used to find the
surfaces and obtain homographies from projector to cam-
era. (c) An everyday object is placed on the surfaces to get
homographies from camera to surface. (d) The final map-
pings are used to create a display that spans the surfaces.

points and metric rectification is achieved using the con-
straint that the display surface contains a rectangle of known
aspect ratio whose boundaries are visible to the camera.

In [11], the projector and camera are rigidly attached
in the manner of a stereo rig and homographies obtained
from two different positions of the rig relative to a planar
surface are combined to estimate the 3-D transformation
between the projector and camera, and their intrinsic pa-
rameters. In the Everywhere Display system [10], a pro-
jector with a motorized mirror is calibrated using a cam-
era and a known 3-D model of the display surfaces. In re-
cent work, Okatani and Deguchi [9] address the problem of
recovering the surface-to-camera homography in a system
with intrinsically-calibrated projectors at unknown poses, a
feature-less planar projection surface and stationary camera.

The primary difference between our work and the ear-
lier research is that we address the autocalibration of mul-
tiple planar surfaces which can be viewed simultaneously
by a single uncalibrated projector-camera pair. Our calibra-
tion approach builds on standard techniques for computing
planar homographies [7, 15] and performing metric rectifi-
cation [8]. In order create a continuous display surface, it
is necessary to map content consistently across the edges
that are formed at the intersections of planes. As a result

of these edge constraints, it is not possible to treat the cal-
ibration problem as a decoupled set of planar calibrations.
Multi-planar scenes could in principle be addressed in the
context of a more general 3-D autocalibration approach, for
example based on recovering the fundamental matrix be-
tween the camera and projector followed by a Euclidean
upgrade [6]. However the display system only requires ho-
mographies between planes to achieve the desired rendering
effect. Moreover, accurate localization of specific geomet-
ric features, such as the edge that defines the intersection of
two display surfaces, are critical for good performance. For
these reasons, we have adopted an approach based on the
simultaneous recovery of multiple planar homographies.

An extreme example of a multi-planar display system is
an immersive environment, such as the CAVE [2] or the
more recent Blue-C system [4], in which every wall surface
is a projected display. In contrast to that work, our goal is to
develop a portable system that could be deployed quickly in
an ordinary office environment. As a consequence, we have
focused on a highly automated calibration approach which
computes only the information that is required to achieve
the desired result. Another difference is that our interface is
designed to be used by multiple users, and is not based on
real-time head tracking as would be the case for a single-
user 3-D display.

Recent work on iLamps [12] includes a conformal map-
ping approach to projecting onto nonplanar surfaces. The
method can deal with surfaces that are curved as well as
piece-wise planar. However, since the approach is not based
on explicitly identifying the seam that joins two planar sur-
faces, unwanted distortions are introduced near the bound-
ary.

3. Multi-Planar Calibration

Our goal is to automatically detect, segment and calibrate a
piece-wise planar scene into a set of connected surfaces that
can form the basis for a multi-planar display. In the most
general formulation of this problem we are given multiple
projector-camera pairs in unknown locations and our goal is
to form a large connected display with minimal input from
the user.

Figure 1(a) illustrates the simplest multi-planar scenario,
where two planes meeting at a common edge form a con-
tinuous display surface. One consequence of the need for
a continuous display is that the planes cannot be calibrated
independently. Coordinate frames must be aligned along an
edge and the overall scale factors must be constrained so
that content can be continuously mapped between displays
without unwanted distortion. Figure 3 illustrates this goal
in the context of a photo-browser application.

Figure 2 (top) shows three multi-planar surface configu-
rations of increasing complexity: a simple two-plane geom-
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Figure 2: Top: Three multi-planar configurations: (a) desk
surface placed against a wall, (b) table pushed into corner
of a room, (c) inside of an open box. Bottom: Graphical
representation of each configuration where homographies
are represented as nodes and constraints between homo-
graphies are edges.

etry (e.g., a desk surface placed against a wall); a common
three-plane corner (e.g., a table pushed into the corner of a
room); and a five-plane, four-corner configuration (e.g., the
inside of an open box, or the floor, ceiling and three walls
of a room). In each case, the goal of our system is to deter-
mine the homography that maps the projector to each sur-
face. Obviously, these homographies are not independent;
points on the common edge between two planes should map
to the same point in the projector, using either homography.

We can visualize the relationship between the various
mappings in the form of a homography graph, where homo-
graphies are represented by nodes and constraints between
homographies are denoted by arcs, as shown in Figure 2
(bottom). In projector-space, this graph partitions the frame
buffer into polygons, where each polygon corresponds to a
display surface and common edges between polygons map
to the edges where the surfaces meet in the real world. By
thinking of the projector as an imaging device rather than
a projection device, one can immediately imagine the con-
figuration of the various surfaces in the projector’s frame
buffer.

Since a homography is completely determined by four
point correspondences, one could specify each surface’s ho-
mography by reading off the coordinates of the surface’s
corners from the image captured by the projector. From
this, we can appreciate that the homography for the far sur-
face in the five-planar display is completely constrained by
the homographies of its four adjacent surfaces. Similarly, it
is important to ensure that a closed loop on this homography
graph returns a point to its original starting position. This
paper shows that initial solutions for the different homogra-

Figure 3: A photo is dragged from one plane to another in
a photo-browser application that spans two surfaces.

phies can be obtained independently, but a refinement step
is necessary to ensure that the mappings correctly obey the
constraints expressed in the homography graph.

We assume that camera and projector optics can be mod-
eled as projectivities [6], therefore we require a homogra-
phy i

P
H
S

from the projector to a Euclidian frame on each
surface i, where the frame is aligned to the physical layout.
A homography from projector to surface cannot be observed
directly. Thus, as in [15], we decompose the mapping for
each surface into two homographies: one from projector to
camera (through the surface), and another from camera to
surface.

Calibration consists of three stages. The first stage (Sec-
tion 4) is the identification of planar surfaces and recov-
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ery of homographies i
P
H
C

from projector to camera through
each surface i. This step uses uncalibrated structured light
to segment planar surfaces and a robust algorithm for es-
timating homographies from line correspondences. The
second stage (Section 5) performs metric rectification and
alignment to obtain the homographies i

C
H
S

from the camera
to each surface i. We use a rectification method based on
orthogonal line pairs. Our results highlight the importance
of normalization for good error properties. The third stage
(Section 6) adjusts the homographies i

P
H
S

from projector to
each surface i to reflect the contact constraints imposed by
the intersection of pairs of surfaces. We describe an iterative
refinement algorithm to enforce the contact constraint.

4. Planar Surface Identification
We describe a line-based method for segmenting planar sur-
faces and estimating homographies. The first step is to iden-
tify planar surfaces using an uncalibrated variant of struc-
tured light. The projector displays a series of horizontal
and vertical lines that are observed by the camera. A line
that crosses multiple surfaces appears as several line sec-
tions (Figure 4). The detection of kinks in the image of the
projected lines can be exploited to segment the camera im-
age into regions corresponding to distinct planar surfaces.
Each kink divides the projected line into two sections. We
fit a line to each section, intersect these lines and connect
the intersections to determine the precise boundary (in the
camera image) between each pair of adjacent surfaces. Us-
ing this boundary, we can process the sets of line sections
on the two surfaces separately. These line sections are used
to recover planar homographies from projector to camera
through the respective surfaces.1

A standard method for estimating the homography be-
tween two planes is to apply the Direct Linear Transform
(DLT) to a set of point correspondences [6]. For each pair
of corresponding homogeneous points xi and x

′
i, the ho-

mography H should satisfy Hxi = x
′
i.

2 Each point corre-
spondence contributes two constraint equations. The set of
constraints for n ≥ 4 point correspondences can be com-
bined into a single null-space problem of size 2n × 9 and
solved using the singular value decomposition (SVD).

Since points and lines are duals in 2D projective ge-
ometry [6] it is straightfoward to derive a DLT formula-
tion for line correspondences. A line satisfying the equa-
tion ax + by + c = 0 can be represented by the vector
l = (a, b, c)> = k(cos θ, sin θ,−ρ)> for any k 6= 0, where
(cos θ, sin θ) define the normal vector to the line and ρ gives

1Note that for the line sections to be distinguishable, the camera and
projector must be suitably displaced from one another: if they were at the
same location, for instance, projected lines would always appear straight,
irrespective of the shape of the surface.

2Here the 2D point (x, y) is represented by the vector x =
(xw, yw, w)>, ∀w 6= 0.

Figure 4: Uncalibrated structured light is used to identify
boundaries between adjacent planar surfaces in the camera
image.

the signed distance from the origin. The line, l
′, resulting

from a transformation through H is given by l
′ = H

−>
l.

Each line correspondence supplies three constraint equa-
tions: l

′
i×H

−>
li = 0. Given n pairs of lines, a least squared

estimate for H can be obtained by solving a null-space prob-
lem of size 3n × 9.

There are two advantages to using lines instead of points
in our calibration framework. The first is that we have al-
ready established the value of line projections for segment-
ing surfaces. Given a set of line sections for a segmented
surface, the homographies can be computed directly with-
out performing any further projections. The second advan-
tage is that it often easier to detect projected lines, since
projected points must be kept small to avoid perspective dis-
tortion.

For each surface i, we calculate a homography i
P
H
C

from
the projector (through surface i) to the camera using lines
fitted to pixels in the camera image, and the known positions
of those lines in the projector. A key issue in the line-based
homography estimation step is achieving robustness to out-
liers. Outliers can arise from two sources. First, in condi-
tions of high ambient lighting, detecting the projected lines
in images can be a noisy process. Second, projected lines
may fall across surfaces in the scene other than the planes of
interest. The result in this case is short line segments in the
periphery of the camera image which are inconsistent with
the desired homography. A least squares estimation method
which is robust to these outliers is required for accurate cal-
ibration.

Robustness has been addressed for point correspon-
dences in [6, 7]. We have developed a robust algorithm for
line correspondences that is based on an algorithm for cal-
culating the fundamental matrix for epipolar geometry [17].
Our algorithm takes a set of n line correspondences L =

4



{(lj , l′j) : 1 ≤ j ≤ n}, and an upper bound ε on the frac-
tion of outliers (e.g., 10%), and returns a homography. It
consists of two main steps. First, we employ DLT to com-
pute homographies using several random minimal subsets
of line correspondences and record the subset that achieves
the lowest error for the remaining correspondences. Sec-
ond, we classify each line correspondence as an inlier or an
outlier depending on its error based on the recorded minimal
subset. We then apply DLT to compute the final homogra-
phy using only the inliers. This algorithm is detailed in a
technical report [1]. We have tested this algorithm exten-
sively, both in simulation and under controlled laboratory
conditions. While traditional closed-form methods are un-
usable in our setup due to noise, the robust line-homography
algorithm reliably recovers the projector-camera mappings
for each surface.

5. Metric Rectification
Once planar surfaces have been identified and their
projector-camera homographies have been recovered, the
next step is to recover the homographies i

C
H
S

from the cam-
era to each surface i. We decompose i

C
H
S

into two parts: a
metric-rectifying homography that maps the image of each
surface into an arbitrary Euclidean frame, and a similarity
transform that aligns this frame to the physical surface. To
obtain the former, the camera observes a set of (arbitrarily-
placed) right angles on each surface. These are obtained by
imaging everyday objects such as postcards.3

Given a rectifying homography, the final step is to de-
termine the similarity transform. We constrain the origin
of each surface’s coordinate frame to a point on a bound-
ary, we constrain its x-axis to lie along that boundary, and
select a scaling that is consistent across all surfaces. Thus,
while the size of a projected object on the multi-surface dis-
play may be chosen arbitrarily, it should not change as it is
moved between surfaces.

Liebowitz and Zisserman [8] describe a method for met-
ric rectification of the image of a planar surface given five or
more images of line pairs that are orthogonal on the surface.
For instance, for our display system, the user could simply
scatter a few rectangular objects (such as postcards) in the
scene.

The conic dual to the circular points C∗∞ on a Euclidian
surface is

C
∗

∞ =





1 0 0
0 1 0
0 0 0



 .

For perpendicular lines l and m, l
>
C
∗
∞m = 0. When

3One could also use images of circular objects, such as CDs, to perform
metric rectification. Although the basic techniques are similar, the im-
age processing is more difficult since one must fit conics to perspectively-
warped circles.

Figure 5: Orthogonal line pairs extracted from randomly-
placed postcards are used to achieve metric rectification.
This image shows the detected positions of a postcard as
it was moved over the surface.

these lines are imaged through a perspective transform H,
the conic dual to the circular points becomes C∗

′

∞ = HC
∗
∞H

>.
The goal is to recover H (up to a similarity transform),

since i
C
H
S

= H
−1. To do this, we first find C

∗
′

∞ for the
given camera image. The images of the perpendicular lines
(see Figure 5) satisfy l

′>
C
∗
′

∞m
′ = 0, so each such pair im-

poses a linear constraint on the elements of C∗
′

∞. The con-
straints can be formed into a null-space problem of the form
Ac = 0, where each constraint gives one row of A and c

is a six-parameter vector representation of C∗
′

∞. The SVD
provides a closed-form solution for C∗

′

∞ given five or more
constraints [6]. This closed-form formulation, which we
will call CF, is analogous to the DLT algorithm, and mini-
mizes an algebraic rather than a geometric error. The value
being minimized,

∑

(l′
>
C
∗
′

∞m
′)2, is related to the square

of the cosine of the angle between the rectified lines.

5.1. Recovery of Rectifying Homography
To obtain an estimate for the homography H we factor C∗

′

∞

into the form HC
∗
∞H

>. Taking the SVD we get UDV
>,

where D is a diagonal matrix. If the input data are well-
conditioned, D33 should be small compared to D11 and D22.
Thus, we assume D33 = 0 and express D in the form
D = BC

∗
∞B

> where

B = B
> =





±√
D11 0 0

0 ±√
D22 0

0 0 1



 .

This gives us the desired decomposition for our estimate of
C
∗
′

∞ as

U(BC∗∞B
>)V> = (UB)C∗∞(UB)> = HC

∗

∞H
> ,

where H = UB. The choices for the signs of the diagonal
elements in B create four possibilities for H, but only two
need to be considered: one where the signs are equal and
one where they are different. Both versions of H will cor-
rectly rectify angles and length ratios in the camera image,
but one will reverse orientation in our region of interest.
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We determine which is the correct one by combining each
with a similarity to get the full homography from camera
to surface as described in section 3, then testing those ho-
mographies with a point that is known to be on a particular
side of the boundary line; only one of them will map it to
the correct side.

5.2. Robust Estimation of Conic Dual
The SVD estimation of C∗

′

∞ described above can suffer from
normalization and robustness problems in practice. As in
the case of the 8-point algorithm [5], we have found that
centering and sphering the line data dramatically improves
the conditioning of the problem and is key for correct metric
rectification. Centering the line data consists of shifting the
origin of the image plane to the homogeneous point x∗ that
minimizes the squared distances to the set of lines: E(x) =
∑

i(x
>
li)

2. The unique solution is obtained by solving a
symmetric 2×2 linear system. The RMS value of ρ after
centering is given by ρ̂ =

√

E(x∗). The image coordinates
are then scaled so that ρ̂ =

√
2. We find empirically that

normalization significantly improves the spectrum of the A

matrix used in the SVD.
There are two rules of thumb we used to assess the con-

ditioning of our constraints: (a) inspection of spectrum of
dual-conic constraint matrix for uniqueness of null-space
and (b) the ratio of the maximum to minimum value for
each constraint imposed by an orthogonal line pair. Fig-
ure 6 shows the distribution of eigenvalues before and after
normalization. Normalization clearly does a good job sepa-
rating the smallest eigenvalues from the rest. Without nor-
malization, the null-space is far from unique. Also, as con-
straints are added, this separation becomes more evident. In
addition to inspecting the spectrum, we noted the ratio of
minimum to maximum values drops from 6 orders of mag-
nitude before normalization to 1 order of magnitude follow-
ing normalization for an experiment involving 27 detected
line pairs from postcards.

As with the robust line homography algorithm (Sec-
tion 4), our algorithm for robust metric rectification clas-
sifies each input line pair as an inlier or outlier, then com-
putes final rectifying homographies from only the inliers. It
takes a set of n line pairs P = {(lj ,mj) : 1 ≤ j ≤ n}
in the camera frame that are known to be orthogonal on the
surface, and an upper bound ε on the fraction of outliers. It
returns two homographies, one of which is the correct one.
The correct homography is identified as described above.
The proportion ε and the minimum number of line pairs s

required to compute a rectifying homography (s=5 in this
case) yield the number of random minimal subsets required
as for our line homography algorithm. For P=0.9999 and
ε=0.1, we require m=11 random minimal subsets. The ro-
bust algorithm proceeds by employing CF on these subsets
of line pairs and records the subset that achieves the low-

Figure 6: Experimental evidence for the importance of
normalization in estimating the dual conic. This shows the
eigenvalue distribution as a function of the number of con-
straints before and after centering and sphering line data.

est error for the remaining n − s line pairs once they have
been transformed using the computed rectifying homogra-
phy. The error metric is

medianP d(H>lj , H
>
mj) ,

where d gives the cosine of the angle between two lines,
and H is the homography derived from the current random
minimal subset.

Using the homography from the recorded minimal sub-
set, we classify each line pair in P as an inlier or outlier.
As cosines, the error values for the pairs are bounded by the
range [0,1], so we simply deem the dnεe pairs with the high-
est error to be outliers. The final rectifying homography is
then computed using CF with only the inliers.

To test our metric rectification algorithm, we generated
homographies by randomly positioning a virtual camera
above a virtual surface as for the line homography. Random
pairs of perpendicular lines on the surface were transformed
with the homography, then the resulting lines in (ρ, θ) were
perturbed with zero-mean Gaussian noise, N(0, σ2). Gross
outliers were added to the line pairs in various proportions.
As outliers were added CF’s error quickly became unac-
ceptable, but that of our closed-form method remained level
with up to 25% outliers.

6. Constraints Between Homographies
As discussed in Section 3, independently calculating the ho-
mographies i

P
H
S

from projector to each surface i does not
guarantee that they will be consistent along the boundaries
between surfaces (Figure 7). We now present an iterative
algorithm that enforces the inter-surface constraints.

6



(a) (b)

Figure 7: (a) Mappings can be inconsistent along inter-
surface boundaries. (b) Our iterative refinement algorithm
(Section 6.1) addresses this problem.

6.1. Algorithm
To simplify the following discussion, let us consider a two-
surface setup. Let 1

S
H
P

= 1

P
H
−1

S
and 2

S
H
P

= 2

P
H
−1

S
be

the homographies mapping each of the two surfaces to the
projector. Ideally those two homographies will transform
points on the boundary line identically; if x is a point on
the boundary, we would like 1

S
H
P
x = 2

S
H
P
x. This will typ-

ically not be the case due to image processing error, so we
apply this constraint by refining the homographies with an
iterative algorithm (Figure 8).

We start by generating five points on each surface (Fig-
ure 8a), and generate initial correspondences in the projec-
tor using the current values of 1

S
H
P

and 2

S
H
P

(Figure 8b).
The locations of the points on the two surfaces are fixed
throughout the algorithm, but their corresponding points in
the projector move as 1

S
H
P

and 2

S
H
P

are adjusted. At least
three common points are needed on the shared boundary;
this is to ensure that length ratios for the two homographies
agree along the boundary.

The goal of the iterative algorithm is to refine 1

S
H
P

and
2

S
H
P

until each common point on the boundary x maps to
the same point in the projector (i.e., 1

S
H
P
x = 2

S
H
P
x) re-

gardless of which homography is used. Figure 8c illustrates
the iterative process. Each common point on the bound-
ary transforms to two distinct points in the projector, and
we create a new point in the projector by taking the mid-
point of these. We set these new points as the correspon-
dences for the boundary points on both surfaces. These new
points, along with the (unchanged) correspondences of the
non-boundary points are used to recompute 1

S
H
P

and 2

S
H
P

for the next iteration, using DLT. We terminate the refine-
ment process when the improvement in the error falls below
a threshold. The error (Figure 8d) is measured as the sum
of the separations of the boundary points plus the sum of
distances between desired and transformed locations of the
non-boundary points (all measured in the projector frame).

6.2. Evaluation
Figure 9 shows a trace of error from a run of our iterative re-
finement algorithm. The combined error drops rapidly with

(a)

(d)(c)

(b)

surface 1

surface 2 common
points

surface 1

surface 2

surface 1

surface 2

surface 1

surface 2

boundary
line

Figure 8: (a) Five points are defined on each surface. (b)
Corresponding points are created in the projector. (c) Each
boundary point pair is replaced by its midpoint. (d) The error
is the sum of distances between transformed points.

the number of iterations; within 20 iterations, the inconsis-
tency between the homographies along the shared boundary
is imperceptible. If the initial estimates for the homogra-
phies were poor, this refinement technique could converge
to a bad solution. In practice, we find that our robust algo-
rithms generate initial estimates for i

P
H
S

that are sufficiently
accurate.

This algorithm works with any number of surfaces and
inter-surface constraints. All of the homographies can be
refined during each iteration of the algorithm, and each set
of corresponding points at a constraint can be replaced by
the centroid.

7. Conclusion
We have presented robust calibration algorithms for align-
ing a camera-projector system to multiple planar surfaces.
Our algorithm for calculating homographies from line cor-
respondences works even when a significant fraction of the
data consists of image processing outliers. This enables us
to deploy the uncalibrated structured light system even in
conditions where the DLT algorithm fails catastrophically.
Our robust metric rectification algorithm employs every-
day objects, such as postcards, to accurately determine the
camera-surface homography for each of the multi-planar
surfaces. Our iterative homography refinement technique
converges in only a few iterations and significantly reduces
inconsistencies along boundaries of multi-surface displays.
None of the techniques presented in this paper require sig-
nificant computation, and all can be deployed in practical
camera-projector systems (requiring under a second of pro-
cessing time).
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Figure 9: Using our homography refinement algorithm, the
sum of errors between transformed points decreases rapidly
with successive iterations. This ensures that homographies
on adjacent surfaces become consistent along their com-
mon boundary.

Figure 10: Using a visualization on a multi-surface display
in an office setting. The projector and camera can be placed
out of the way.

We have implemented an interactive application for a
multi-surface display that enables users to manipulate im-
ages on each surface, and move them between surfaces (Fig-
ure 3). Multi-surface displays could also be used to simulta-
neously present different visualizations of a dataset. For ex-
ample, a geologist could manipulate an overhead map on a
horizontal surface while examining a vertical cross-section
through the dataset on the other surface (Figures 1(d) and
10). Similarly, an architect or CAD tool user could simul-
taneously manipulate plan and elevation views on different
surfaces. A three-surface display projected into a corner
could be an affordable alternative to expensive immersive
volumetric visualization displays, enabling users to exam-
ine 3D structure by clipping or projecting the data on to
each surface. All of these displays can be created using a
single commodity projector and camera, on any available
surfaces in the user’s environment.
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