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Abstract

We present a robust calibration method for aligning a
camera-projector system to multiple planar surfaces. Un-
like prior work, we do not recover the 3D scene geometry,
nor do we assume knowledge of projector or camera posi-
tion.

We recover the mapping between the projector and each
surface in three stages. In the first stage, we recover pla-
nar homographies between the projector and the camera
through each surface using an uncalibrated variant of struc-
tured light. In the second stage, we express the homogra-
phies from the camera to each display surface as the com-
position of a metric rectification and a similarity transform.
Our metric rectification algorithm uses several images of a
rectangular object. In the third stage, we obtain the homo-
graphies between the projector and each surface by combin-
ing the results of the previous two stages. Inconsistencies
appear along the boundaries between adjacent surfaces; we
eliminate them through a process of iterative refinement.

Standard techniques for recovering homographies from
line correspondences and performing metric rectification
are very sensitive to image processing outliers. We present
robust algorithms for both tasks, and confirm that accuracy
is maintained in the presence of outliers, both in simulation
and on our interactive application that spans a table and ad-
jacent wall.

Our calibration method enables users to quickly set up
multi-planar displays as they are needed, using any avail-
able projector and camera. These displays could be applied
to visualization tasks in medical imaging, architecture and
geographic information systems.

1. Introduction
Recent advances in commodity high-resolution ultra-
portable projectors have stimulated the development of a
variety of novel projected displays such as large multi-
projector walls [2], steerable projected displays [6], im-
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Figure 1: A two-surface camera-projector system running
a topographic visualization. The camera and projector are
mounted in unknown locations.

mersive environments [1, 8], intelligent presentation sys-
tems [7, 9] and remote-collaboration tools [10]. The ef-
fort involved in manually calibrating multiple projectors to
each other and aligning projected displays to physical sur-
faces has motivated research in camera-projector systems,
where techniques adopted from multi-view computer vision
are applied to collections of projectors and cameras.

This paper describes a calibration method for creating
novel projected displays where users can visualize data on
multiple planar surfaces (Figure 1). Unlike prior work, we
do not recover the 3D scene geometry, nor do we assume
knowledge of projector or camera position. This enables
users to quickly set up multi-surface displays as they are
needed, using any available projector and camera.

The remainder of this paper is structured as follows. Sec-
tion 2 discusses related work. Sections 3, 4, 5 and 6 describe
and evaluate our calibration algorithms. Section 7 summa-
rizes our contributions and proposes some promising direc-
tions for future research.



2. Related Work

The calibration of multi-surface displays using a camera-
projector system is explored in the Office of the Future [8],
where a complete 3D model of the display surfaces is ex-
tracted using structured light from a projector. That paper
assumes that the intrinsic and extrinsic parameters of the
camera and projector are known. We do not need to recover
3D scene geometry and the locations of our camera and pro-
jector are unknown.

Automatic calibration of a camera-projector system is
presented in [9]. While that paper does not assume knowl-
edge of projector and camera position, it assumes that the
display surface consists of a single rectangle of known as-
pect ratio (whose boundaries are visible to the camera), and
that the mapping between projector and surface can be de-
scribed by a single planar homography. Our method ap-
plies to multiple surfaces, and we present more general al-
gorithms for recovering the mappings.

The self-calibrating projector [7] automatically aligns its
image to any (single) vertical planar surface using orienta-
tion information obtained from a tilt sensor. Although the
global position of the components is not known, the system
requires that the projector and camera be rigidly attached to
form a calibrated stereo pair.

The use of homographies to describe transforms in
multi-view geometry has become ubiquitous in computer
vision (Hartley and Zisserman [3] present a good introduc-
tion to the subject). There has been much recent activity
in the area of recovering 2D planar homographies, partic-
ularly from noisy point correspondences [4]. Treating the
projector as a camera enables many results from the field to
be applied directly to our problem. One of our algorithms
for metric rectification is derived from unstratified rectifica-
tion [5].

The idea of projecting displays onto everyday objects is
becoming more popular [6, 8]. An extreme example of such
a system is the CAVE [1], where the user is immersed in-
side a multi-surface projected display. A serious drawback
of many multi-surface displays is that they are designed for
a single user, whose head is tracked in real-time (since the
projected scene and surface geometry do not match). While
our calibration methods could be applied to those displays,
we focus on displays where the 3D surface geometry agrees
with the projected visualizations. These displays can be
used by multiple users since all users agree on the orien-
tations of the projected objects.

3. Multi-Planar Calibration

The goal is to produce a projected display on several flat
surfaces, without requiring any knowledge of the 3D layout.
A projector and a camera, mounted in unknown locations,
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Figure 2: The 3D geometry of the display surfaces is un-
known. The projector and camera are arbitrarily placed so
that their fields of view contain the surfaces. The goal is to
recover a mapping from the projector to each surface.

are used to calibrate and create the display (Figure 2) with
minimal input from the user.

We assume that camera and projector optics can be mod-
eled as projectivities [3], therefore we require a homogra-
phy i

PHS from the projector to a Euclidian frame on each
surface i. Since these cannot be observed directly, for each
surface we decompose the mapping into two homographies:
from projector to camera (through the surface), and from
camera to surface. This generalizes an existing method for
calibrating a projector to a single surface [9].

Calibration consists of three stages. The first stage (Sec-
tion 4) employs an uncalibrated variant of structured light to
identify the planar surfaces, and to recover mappings i

PHC

between projector and camera through each surface i. The
projector displays a series of horizontal and vertical lines
that are observed by the camera. A line that crosses multi-
ple surfaces appears as several line sections (Figure 3). We
exploit this to segment the camera image into regions corre-
sponding to the planar surfaces. We fit a line to each section,
intersect these lines and connect the intersections1 to deter-
mine the precise boundary (in the camera image) between
each pair of adjacent surfaces. The same line sections are
then used to recover planar homographies from projector to
camera through the respective surfaces. For the line sec-
tions to be distinguishable, the camera and projector must
be suitably displaced from one another: if they were at the
same location, for instance, projected lines would always
appear straight, irrespective of the shape of the surface.

In the second stage (Section 5), we recover homogra-
phies, i

CHS from the camera to each surface i. Structured
light cannot be used for this stage since the relative positions
of the projector and camera are unknown. We decompose
the mapping into two parts: a metric-rectifying homogra-
phy that maps the image of each surface into an arbitrary

1Simply connecting the raw intersections would give jagged bound-
aries; we model the boundaries as straight lines, fitted with orthogonal
regression.
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Figure 3: Uncalibrated structured light is used to identify
boundaries between adjacent planar surfaces in the camera
image.

Euclidean frame, and a similarity transform that aligns this
frame to the surface. We explore two methods for metric
rectification: (1) observing a set of line pairs known to be
perpendicular on each surface [3, 5]; (2) observing a rect-
angle of known aspect ratio on each surface. To recover the
similarity transform, we constrain the origin of each sur-
face’s coordinate frame to a point on a boundary, we con-
strain its x-axis to lie along that boundary, and select a scal-
ing that is consistent across all surfaces. Thus, the size of
a projected object may be chosen arbitrarily, but should not
change as it is moved between surfaces.

The final stage (Section 6) combines the homographies
calculated in the two previous stages:

i
PHS = i

CHS
i
PHC ,

for each surface i. Since the homographies i
PHS for the dif-

ferent surfaces were calculated independently, there is no
guarantee that they will be consistent along inter-surface
boundaries. We apply an iterative refinement technique to
ensure continuity across boundaries.

4. Homography from
Line Correspondences

The standard method of calculating a homography between
two planes is to obtain corresponding homogeneous points
xi and x′

i. A homography H that maps one set to the other
will satisfy2

Hxi = x′
i .

By seeking the H for which x′
i × Hxi = 0, a closed-form

least-squares solution is reached. Since the three rows of
this constraint are not linearly independent, the third row of
each constraint can safely be discarded. Therefore, n ≥ 4

2In homogeneous coordinates, the 2D point (x, y) is represented by the
vector x = (xw, yw, w)�, ∀w �= 0. Homogeneous vectors and homo-
graphies are therefore invariant to non-zero scaling factors. Throughout the
paper this scaling is implicit, and x = y should be interpreted as x = ky,
for some k �= 0.

point correspondences can be combined into a single null-
space problem of size 2n×9 and solved using singular value
decomposition (SVD). This method of recovering homogra-
phies minimizes algebraic rather than geometric error, and
is commonly known as the Direct Linear Transform (DLT).

Lines and points are duals in 2D projective geometry [3].
A line described by the equation ax + bx + c = 0 can be
represented by the 3-element vector l = (a, b, c)�, where
we can express the line in a canonical form with the con-
straint ‖l‖ = 1. The line, l′, resulting from a transformation
through H is given by l′ = H−�l. A variant of the DLT
algorithm can be used to calculate homographies from line
correspondences. This closed-form solution attempts to sat-
isfy l′i×H−�li = 0 in a least-squares sense. However, since
any element of the line vector can be zero, all three rows of
each constraint should be included (resulting in a null-space
problem of size 3n × 9).

We present a new algorithm for calculation of homogra-
phies from line correspondences in Section 4.1, and evalu-
ate it in Section 4.2.

4.1. Algorithm
For each surface i, we calculate a homography i

PHC from
the projector (through surface i) to the camera using lines
fitted to pixels in the camera image, and the known posi-
tions of those lines in the projector. The lines in the camera
are subject to error, and occasionally the image processing
techniques used to find them produce a totally incorrect re-
sult. Least-squares minimization is very sensitive to out-
liers, so we require an algorithm to calculate a homography
from line correspondences that is robust to such outliers.
Homography calculation from noisy point correspondences
has been addressed [3, 4], but here we present an algorithm
using line correspondences that is based on an algorithm
for calculating the fundamental matrix for epipolar geome-
try [11].

Our algorithm takes a set of n line correspondences
L = {(lj , l′j) : 1 ≤ j ≤ n}, and an upper bound ε on the
fraction of outliers (e.g., 10%), and returns a homography.
It consists of two main steps. First, we employ DLT to com-
pute homographies using several random minimal subsets
of line correspondences and record the subset that achieves
the lowest error for the remaining correspondences. Sec-
ond, we classify each line correspondence as an inlier or an
outlier depending on its error based on the recorded minimal
subset. We then apply DLT to compute the final homogra-
phy using only the inliers.

The size s of each minimal subset is 4 since this many
line correspondences are required to compute a homogra-
phy.3 If we require a probability P that at least one of the

3It is important to ensure that the subset is not degenerate (i.e., no three
lines should be concurrent).
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subsets does not contain any outliers, the number of subsets
m that must be used is given by

m =
⌈

log(1 − P )
log[1 − (1 − ε)s]

⌉
.

Typical values are P=0.9999 and ε=0.1, giving the number
of samples m=9. The error for each homography based on s
line correspondences is the median M of the errors between
the desired and actual locations for the remaining n − s
correspondences not used in the homography calculation:

M = medianL d(l′j , Hlj) ,

where the error d measures the closeness of one line to an-
other, and H is the homography derived from the current
random minimal subset. We use d(m1,m2) = ‖m1×m2‖

‖m1‖ ‖m2‖ .
The median error for the recorded minimal subset is used
to calculate an estimate of the standard deviation σ̂ of the
errors [11]:

σ̂ = 1.4826
(

1 +
5

n − p

)
M,

where M is the value of the median error. The final ho-
mography i

PHC is calculated from the inliers using DLT.
We choose the inliers to be those line correspondences for
which d(l′i, Hli) < 2.5 σ̂, where H is the homography calcu-
lated from the recorded subset.

4.2. Evaluation
To test the algorithm above we synthesized homographies
by randomly positioning a virtual projector and camera
above a virtual surface to simulate the hardware (Figure 4).
The surface is defined to be a 1×1 unit square, and a ran-
dom point X on the surface is selected to be the “look point”
for the camera. The camera C is positioned at a fixed dis-
tance from X, with a random azimuth, elevation4 and roll
angle. The imaged lines are expressed in (ρ, θ) form5 and
perturbed with zero-mean Gaussian noise, N(0, σ2).

We explored several noise levels in the simulated exper-
iments discussed below. For ρ, σρ ranged up to 1% of the
screen width, in increments of 0.2%. For θ, σθ ranged up to
0.01π in increments of 0.002π. Figure 5 shows the results
(averaged over 10,000 runs) from two noise levels: level 1
(σρ=0.2, σθ=0.002π) and level 4 (σρ=0.8, σθ=0.008π).

The error in the homography calculated from the lines is
measured by transforming ten random points and comput-
ing the mean geometric distance between their expected and
actual locations (expressed as a proportion of the camera
image width). Gross outliers were added to the line corre-
spondences in incremental proportions from 0 to 5%, by re-
placing some lines with others drawn between two random

4To produce realistic images, elevation is greater than 20◦.
5This is consistent with the Hough transform used in our physical setup.
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Figure 4: (a) In simulation the virtual camera is placed on
on a hemisphere above a random point on the surface, with
an elevation of at least 20 degrees. (b) The camera’s field of
view is created to include the whole surface.
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Figure 5: Comparison in the point transfer error between
DLT and our robust line homography algorithm for two noise
levels. The error is plotted on a log scale. DLT degrades
even with a very small fraction of outliers. See text for de-
tails.

points in the camera. The results show that while the closed-
form solution becomes useless in the presence of outliers,
our robust method successfully identifies the outliers and
removes them. Additional experiments (not detailed here)
show that the error curve remains flat for fractions of out-
liers up to 20%.

5. Metric Rectification
As discussed in Section 3, the mapping i

CHS, from camera
to surface i, can be decomposed into a metric-rectifying ho-
mography and a similarity transform. The method for deter-
mining the latter was discussed previously. We now present
two algorithms for calculating the former.

5.1. Algorithm 1
Liebowitz and Zisserman [5] describe a method for metric
rectification of the image of a planar surface given five or
more images of line pairs that are orthogonal on the sur-
face. For instance, for our display system, the user could
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simply scatter a few rectangular objects (like postcards) in
the scene.

The conic dual to the circular points C∗∞ on a Euclidian
surface is

C∗∞ =

⎡
⎣ 1 0 0

0 1 0
0 0 0

⎤
⎦ .

For perpendicular lines l and m, l�C∗∞m = 0. When
these lines are imaged through a perspective transform H,
the conic dual to the circular points becomes C∗

′
∞ = HC∗∞H�.

The goal is to recover H (up to a similarity transform),
since i

CHS = H−1. To do this, we first find C∗
′

∞ for the
given camera image. The images of the perpendicular lines
satisfy l′�C∗

′
∞m′ = 0, so each such pair imposes a linear

constraint on the elements of C∗
′

∞. The constraints can be
formed into a null-space problem, and five or more such
constraints enable a closed-form solution that gives us an
estimate of C∗

′
∞ [3]. This formulation is analogous to the

DLT algorithm, and minimizes an algebraic rather than a ge-
ometric error. The value being minimized,

∑
(l′�C∗

′
∞m′)2,

is related to the square of the cosine of the angle between
the rectified lines.

The next step is to factor our estimate of C∗
′

∞ into the form
HC∗∞H�. We decompose our estimate using singular value
decomposition into the form UDV�, where D is a diagonal
matrix. If the input data are well-conditioned D33 should be
small compared to D11 and D22, so we assume D33 = 0 and
express D in the form D = BC∗∞B� where

B = B� =

⎡
⎣ ±√

D11 0 0
0 ±√

D22 0
0 0 1

⎤
⎦ .

This gives us the desired decomposition for our estimate of
C∗

′
∞ as

U(BC∗∞B�)V� = (UB)C∗∞(UB)� = HC∗∞H� ,

where H = UB. The choices for the signs of the diagonal
elements in B might seem to create four possibilities for H
but only two need to be considered: one where the signs are
equal and one where they are different. Both versions of H
will correctly rectify angles and length ratios in the camera
image, but one will reverse orientation in our region of in-
terest. We determine which is the correct one by combining
each with a similarity to get the full homography from cam-
era to surface as described in section 3, then testing those
homographies with a point that is known to be on a partic-
ular side of the boundary line; only one of them will map it
to the correct side.

This closed-form algorithm for metric rectification
(termed CF) is attractive because it does not require any spe-
cialized calibration target: any set of perpendicular lines on
the surface can be used. In practice, we obtain line pairs by

taking a few images of a rectangular object, such as a post-
card, on each surface. However, CF shares DLT’s inherent
susceptibility to gross outliers in the line pairs, motivating
the development of a robust variant.

As with the robust line homography algorithm (Sec-
tion 4.1), our algorithm for robust metric rectification clas-
sifies each input line pair as an inlier or outlier, then com-
putes final rectifying homographies from only the inliers. It
takes a set of n line pairs P = {(lj ,mj) : 1 ≤ j ≤ n}
in the camera frame that are known to be orthogonal on the
surface, and an upper bound ε on the fraction of outliers. It
returns two homographies, one of which is the correct one.
The correct homography is identified as described above.
The proportion ε and the minimum number of line pairs s
required to compute a rectifying homography (s=5 in this
case) yield the number of random minimal subsets required
as for our line homography algorithm. For P=0.9999 and
ε=0.1, we require m=11 random minimal subsets. The ro-
bust algorithm proceeds by employing CF on these subsets
of line pairs and records the subset that achieves the low-
est error for the remaining n − s line pairs once they have
been transformed using the computed rectifying homogra-
phy. The error metric is

medianP d(Hlj , Hmj) ,

where d gives the cosine of the angle between two lines,
and H is the rectifying homography derived from the current
random minimal subset.

Using the homography from the recorded minimal sub-
set, we classify each line pair in P as an inlier or outlier.
As cosines, the error values for the pairs are bounded by the
range [0,1], so we simply deem the �nε� pairs with the high-
est error to be outliers. The final rectifying homography is
then computed using CF with only the inliers.

5.2. Evaluation
To test Algorithm 1 we generated homographies by ran-
domly positioning a virtual camera above a virtual surface
as for the line homography. Random pairs of perpendicular
lines on the surface were transformed with the homogra-
phy, then the resulting lines in (ρ, θ) were perturbed with
zero-mean Gaussian noise, N(0, σ2). As in Section 4.2,
we considered a number of noise levels. For ρ, σρ ranged
up to 0.1% of the screen width, in increments of 0.02%.
For θ, σθ ranged up to 0.001π in increments of 0.0002π.
Figure 6 shows results (averaged over 1000 runs) from two
noise levels: level 1 (σρ=0.02, σθ=0.0002π) and level 4
(σρ=0.08, σθ=0.0008π).

Gross outliers were added to the line pairs in various pro-
portions. To evaluate the algorithm, we generated a set of
random orthogonal line pairs on the surface, and mapped
them through the known imaging homography. These im-
aged line pairs were then transformed using the rectifying
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Figure 6: Comparison in the rectification angle error be-
tween CF and our robust metric rectification algorithm for
two noise levels. CF degrades rapidly as outliers are added.
See text for details.

homography. The rectification error is the average deviation
of rectified angles from the desired 90◦. Our results show
that when no outliers are present our robust algorithm has
an accuracy similar to that of CF, but as outliers are added
CF’s error quickly becomes unacceptable, while that of the
robust method remains level. The robust method effectively
identifies and removes the outliers. Additional experiments
(not detailed here) show that the error curve remains flat for
fractions of outliers up to 25%.

5.3. Algorithm 2
An alternate approach to metric rectification relies on imag-
ing a calibration object, for example a rectangle with a
known aspect ratio, a. Such a rectangle can be defined
by the four points: {(0, 0), (a, 0), (a, 1), (0, 1)}. The cor-
responding points in the camera frame are given by the im-
age coordinates of the corners. Using DLT, we can recover
a rectifying mapping, which can be composed with a sim-
ilarity transform to obtain i

CHS. In practice, we can use an
object with more feature points (e.g., a checkerboard) and
replace the simple DLT with its more robust RANSAC vari-
ant [3]. The primary disadvantage of this algorithm is that it
requires the user to supply an artificial target with a precise
calibration pattern.

5.4. Discussion
We evaluated both Algorithm 1 and 2 in simulation and on
our camera-projector display system. We found that the
simpler algorithm performed better (at the expense of user
inconvenience). Our robust Algorithm 1 successfully re-
moves all of the outliers, but the inherent sensitivity in the
method used to obtain C∗

′
∞ necessitates very accurate image

processing estimates of observed lines. The standard devi-
ation of the line estimates in our current camera-projector

(a) (b)

Figure 7: (a) Mappings can be inconsistent along inter-
surface boundaries. (b) Our iterative refinement algorithm
(Section 6.1) addresses this problem.

setup is too high for Algorithm 1. We are exploring exten-
sions to Algorithm 1 (such as better normalization) to make
the technique more practical; our display system currently
uses Algorithm 2.

6. Constraints Between Homographies
As discussed in Section 3, the homographies i

PHS from pro-
jector to each surface i are calculated independently, and
thus there is no guarantee that they will be consistent along
boundaries between surfaces (Figure 7). We now present an
algorithm for iteratively refining these homographies.

6.1. Algorithm
To simplify the following discussion, let us consider a two-
surface setup. Let 1

SHP = 1
PH

−1
S and 2

SHP = 2
PH

−1
S be

the homographies mapping each of the two surfaces to the
projector. Ideally those two homographies will transform
points on the boundary line identically; if x is a point on
the boundary, we would like 1

SHPx = 2
SHPx. This will typ-

ically not be the case due to image processing error, so we
apply this constraint by refining the homographies with an
iterative algorithm (Figure 8).

We start by generating five points on each surface (Fig-
ure 8a), and generate initial correspondences in the projec-
tor using the current values of 1

SHP and 2
SHP (Figure 8b).

The locations of the points on the two surfaces are fixed
throughout the algorithm, but their corresponding points in
the projector move as 1

SHP and 2
SHP are adjusted. At least

three common points are needed on the shared boundary;
this is to ensure that length ratios for the two homographies
agree along the boundary.

The goal of the iterative algorithm is to refine 1
SHP and

2
SHP until each common point on the boundary x maps to
the same point in the projector (i.e., 1

SHPx = 2
SHPx) re-

gardless of which homography is used. Figure 8c illustrates
the iterative process. Each common point on the bound-
ary transforms to two distinct points in the projector, and
we create a new point in the projector by taking the mid-
point of these. We set these new points as the correspon-
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surface 2
common

points

surface 1
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boundary

line

Figure 8: (a) Five points are defined on each surface. (b)
Corresponding points are created in the projector. (c) Each
boundary point pair is replaced by its midpoint. (d) The error
is the sum of distances between transformed points.

dences for the boundary points on both surfaces. These new
points, along with the (unchanged) correspondences of the
non-boundary points are used to recompute 1

SHP and 2
SHP

for the next iteration, using DLT. We terminate the refine-
ment process when the improvement in the error falls below
a threshold. The error (Figure 8d) is measured as the sum
of the separations of the boundary points plus the sum of
distances between desired and transformed locations of the
non-boundary points (all measured in the projector frame).

6.2. Evaluation
Figure 9 shows a trace of error from a run of our iterative re-
finement algorithm. The combined error drops rapidly with
the number of iterations; within 20 iterations, the inconsis-
tency between the homographies along the shared boundary
is imperceptible. If the initial estimates for the homogra-
phies are sufficiently inaccurate, this refinement technique
can converge to a bad solution. However, in practice, we
find that our robust algorithms generate sufficiently good
estimates for i

PHS that refinement improves the final cali-
bration of our display system.

7. Conclusion
We have presented robust calibration algorithms for align-
ing a camera-projector system to multiple planar surfaces.
Our algorithm for calculating homographies from line cor-
respondences works even when a significant fraction of the
data consists of image processing outliers. This enables us
to deploy the uncalibrated structured light system in condi-
tions where the DLT algorithm fails catastrophically (Fig-
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Figure 9: Using our homography refinement algorithm, the
sum of errors between transformed points decreases rapidly
with successive iterations. This ensures that homographies
on adjacent surfaces become consistent along their com-
mon boundary.

ure 10a). For metric rectification, Algorithm 1 successfully
removes outliers, but is limited by the inherent instability
of the conic-dual method (Figure 10b). We are pursuing
methods for improving its performance. We currently em-
ploy the simpler, but less natural, Algorithm 2 (Figure 10c).
Our iterative homography refinement technique converges
in only a few iterations and significantly reduces inconsis-
tencies along boundaries of multi-surface displays. None
of the techniques presented in this paper require significant
computation, and all can be deployed in practical camera-
projector systems (requiring under a second of processing
time). Our aim is to calibrate multi-surface display systems
without the use of specialized targets, simply by imaging
everyday objects (such as sheets of paper) in the scene.

We have implemented an interactive application for a
multi-surface display that enables users to manipulate im-
ages on each surface, and move them between surfaces (Fig-
ure 10c). Multi-surface displays could also be used to si-
multaneously present different visualizations of a dataset.
For example, a geologist could manipulate an overhead map
on a horizontal surface while examining a vertical cross-
section through the dataset on the other surface (Figure 1).
Similarly, an architect or CAD tool user could simultane-
ously manipulate plan and elevation views on different sur-
faces. A three-surface display projected into a corner could
be an affordable alternative to expensive immersive volu-
metric visualization displays, enabling users to examine 3D
structure by clipping or projecting the data on to each sur-
face. All of these displays can be created using a single
commodity projector and camera, on any available surfaces
in the user’s environment.
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(a) (b) (c)

Figure 10: Multi-surface display aligned using three calibration techniques: (a) The standard calibration (iPHC using DLT,
i
CHS using CF) is unusable due to image processing outliers – the projected images are not even close to being rectangular;
(b) The robust algorithm (iPHC using robust algorithm, i

CHS using Algorithm 1) removes outliers, but the metric rectification
from Algorithm 1 is insufficiently accurate; (c) Our current implementation (iPHC using robust algorithm, i

CHS using Algorithm 2)
correctly calibrates the display to both surfaces – the images are now rectangular and aligned to the surfaces.

Acknowledgments

This project was made possible by the HP Labs summer
internship program through which Mark Ashdown was able
to work at CRL. We would like to thank Keith Packard and
Matthew Mullin for their help and comments.

References
[1] C. Cruz-Neira, D. Sandlin, and T. DeFanti. Surround-screen

projection-based virtual reality: The design and implemen-
tation of the CAVE. In Proceedings of SIGGRAPH, 1993.

[2] T. Funkhouser and K. Li. Large format displays. Computer
Graphics and Applications, 20(4), 2000. (guest editor intro-
duction to special issue).

[3] R. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2000.

[4] K. Kanatani, N. Ohta, and Y. Kanazawa. Optimal homogra-
phy computation with a reliability measure. IEICE Transac-
tions on Information and Systems, E83-D(7), 2000.

[5] D. Liebowitz and A. Zisserman. Metric rectification for per-
spective images of planes. In Proceedings of Computer Vi-
sion and Pattern Recognition, 1998.

[6] C. Pinhanez. The Everywhere display. In Proceedings of
Ubiquitous Computing, 2001.

[7] R. Raskar and P. Beardsley. A self-correcting projector. In
Proceedings of Computer Vision and Pattern Recognition,
2001.

[8] R. Raskar, G. Welch, M. Cutts, A. Lake, L. Stesin, and
H. Fuchs. The office of the future: A unified approach to
image-based modeling and spatially immersive displays. In
Proceedings of SIGGRAPH, 1998.

[9] R. Sukthankar, R. Stockton, and M. Mullin. Smarter pre-
sentations: Exploiting homography in camera-projector sys-
tems. In Proceedings of International Conference on Com-
puter Vision, 2001.

[10] N. Takao, J. Shi, and S. Baker. Tele-graffiti. Techni-
cal Report CMU-RI-TR-02-10, Carnegie Mellon University,
March 2002.

[11] G. Xu and Z. Zhang. Epipolar Geometry in Stereo, Mo-
tion and Object Recognition. Kluwer Academic Publishers,
1996.

8


